目的 考察壳聚糖修饰的L-天门冬酰胺酶脂质体的血浆稳定性及药动学特性。方法 血浆稳定性:于不同时间点,分别测定L-天门冬酰胺酶和壳聚糖修饰的L-天门冬酰胺酶脂质体在大鼠空白血浆中的活性。大鼠静脉注射L-天门冬酰胺酶和壳聚糖修饰的L-天门冬酰胺酶脂质体后,分别考察其药动学特性。采用DAS药动学软件计算药动学参数。结果 在空白血浆中,壳聚糖修饰的L-天门冬酰胺酶脂质体的活性高于L-天门冬酰胺酶;壳聚糖修饰的L-天门冬酰胺酶脂质体的活性-时间曲线下面积(AUC0-48 h)约为L-天门冬酰胺酶的3.3倍,壳聚糖修饰的L-天门冬酰胺酶脂质体的平均滞留时间(MRT0-48 h)约为ASP的2.3倍。结论 壳聚糖修饰的L-天门冬酰胺酶脂质体能提高L-天门冬酰胺酶的血浆稳定性及生物利用度。
Abstract
OBJECTIVE To investigate the stability and pharmacokinetics of chitosan-modified L-asparaginase liposomes. METHODS The activities of L-asparaginase and chitosan-modified L-asparaginase liposomes in blank rat plasma were determined at different time. L-asparaginase and chitosan-modified L-asparaginase liposomes were intravenously injected to rats through tail vein. The pharmacokinetic parameters were calculated by DAS. RESULTS The activity of chitosan-modified L-asparaginase liposomes in plasma was significantly higher than that of L-asparaginase. The AUC0-48 hof chitosan-modified L-asparaginase liposomes was as 3.3 times as that of L-asparaginase. And the MRT0-48 hof chitosan-modified L-asparaginase liposomes was as 2.3 times as that of L-asparaginase. CONCLUSION Chitosan-modified L-asparaginase liposomes can improve the stability and bioavailability of L-asparaginase.
关键词
L-天门冬酰胺酶 /
壳聚糖 /
脂质体 /
稳定性 /
药动学
{{custom_keyword}} /
Key words
L-asparaginase /
chitosan /
liposome /
stability /
pharmacokinetics
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SEVAL G C, OZCAN M. Treatment of acute myeloid leukemia in adolescent and young adult patients[J]. J Clin Med, 2015, 4(3):441-459.
[2] HONG G P, PAN Z Y, CHEN H B, et al. Progress in clinical treatment of acute myeloid leukemia [J]. Anti-tumor Pharm(肿瘤药学), 2012, 12(3):166-176.
[3] GOYAMA S. Acute myeloid leukemia: molecular pathogenesis and new therapeutic strategies[J]. Rinsho Ketsueki, 2016, 57(2):118-128.
[4] DOMBRET H, GARDIN C. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016, 127(1):53-61.
[5] BAHREINI E, AGHAIYPOUR K, ABBASALIPOURKABIR R, et al. Preparation and nanoencapsulation of L-asparaginase Ⅱ in chitosan-tripolyphosphate nanoparticles and in vitro release study[J]. Nanoscale Res Lett, 2014, 9(1):340.
[6] CHEN H, WU J, SUN M, et al. N-Trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin[J]. J Liposome Res, 2012, 22(2):100-109.
[7] ZHOU Y, ZHANG M, HE D, et al. Uricase alkaline enzymosomes with enhanced stabilities and anti-hyperuricemia effects induced by favorable microenvironmental changes[J]. Sci Rep, 2016, 7:20136.
[8] XIE J C, HE D, YAN Z J, et al. Preliminary stability of asparaginase-loaded self-assembled nanoparticles based on PEG grafted hyaluronic acid and dimethyl-β-cyclodextrin [J]. Chin J Pharm(中国医药工业杂志), 2015, 46(7):716-721.
[9] SHI J, CHENG Y, CHEN W H, et al. Preparation of long-circulating liposome containing etoposide and its stability in rats plasma [J]. J Guangzhou Univ Tradit Chin Med(广州中医药大学学报), 2009, 26(3): 270-273.
[10] YAN Z J, XIE J C, HE D, et al. Pharmacokinetics and bioequivalence assessment of a self-assembled asparaginase nanocapsule in rats [J]. J Southern Med Univ(南方医科大学学报), 2016, 36(1): 90-93.
[11] JIN K, L Y, YIN Z N, et al. Preparation and characterization of anti-free radical co-enzyme liposomes [J]. West China J Pharm Sci(华西药学杂志), 2009, 24(5):452-454.
[12] YE M W, ZENG M W, GAO W F, et al. Preparation and characterization of genipin-crosslinked silk fibroin/chitosan controlledrelease microspheres [J]. J Southern Med Univ(南方医科大学学报), 2014, 34(6): 875-879.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}